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From the Director 

Contact: Jeff Hittinger 

“Once we rid ourselves of traditional thinking we can get on with creating the future.” – 
Jimmy Bertrand 

He may have been talking about music, but jazz drummer Jimmy Bertrand was certainly 
revealing a deeper truth: Innovation comes from thinking beyond what is and instead 
imagining what is possible. In this issue of the CASC Newsletter, we delve into ways in 
which machine learning (ML) and its applications are changing how science is done. Data-
driven methods are here to stay and are augmenting the already formidable tools in our 
computational science toolbox. The future isn’t data-driven or theory-driven approaches—
it’s data-driven and theory-driven methods used together leveraging the best of both. We 
are at an exciting time where artificial intelligence (AI) is becoming a genuine game-
changer in how we do our work, and CASC researchers are exploring and defining this new 
paradigm. 

A common theme throughout this issue is the incorporation of advanced ML techniques 
into complex scientific workflows, from dynamic computed tomography (CT) to scalable 
Gaussian processes (GPs) and autonomous multiscale (AMS) simulations. In this edition, 
we explore several groundbreaking projects: “Machine Learning Under the Hood of 
Dynamic Computed Tomography” discusses the use of implicit neural representations 
(INR) to improve high-fidelity, 4D CT reconstruction. “MuyGPs: A Scalable and 
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Approximate Gaussian Process Framework” describes a novel approach to GPs that 
significantly reduces computational costs, making this powerful technique viable for larger 
datasets, such as those coming from astronomical observations. 

“Safe and Trustworthy AI” highlights efforts to ensure—as we incorporate large language 
models (LLMs) and other ML techniques into our technical workflows and simulation 
codes—the safety and security of advanced AI systems throughout their lifecycle. Finally, 
“Autonomous Multiscale Simulations – Embedded Machine Learning for Smart 
Simulations” showcases the development of autonomously improving data-driven 
surrogate models to accelerate multiphysics simulations, enhancing both speed and 
reliability. These innovations not only enhance the accuracy and efficiency of scientific 
research but also pave the way for new methodologies in data visualization, uncertainty 
quantification (UQ), and AI safety. 

Collaborations | Machine Learning Under the Hood of 
Dynamic Computed Tomography 

Contact: Andrew Gillette and Hyojin Kim 

CT plays an important role in nondestructive evaluation (NDE) across LLNL’s diverse 
mission areas such as material characterization, additive manufacturing (AM), weapon 
component inspection, transportation security, and clinical diagnosis. Recent NDE 
advancements have led to the pursuit of more challenging CT imaging, including 
reconstruction from projection data with limited angular ranges and dynamic 4D CT for 
moving objects, characterized as ill-posed inverse problems. 

To tackle these intricate CT problems, CASC researcher Hyojin Kim and his team have 
developed two distinct directions: 1) data-driven ML approaches, such as the conditional 
diffusion-based method for limited-angle CT [1] and 2) training-free reconstruction 
approaches leveraging INR for dynamic 4D CT of deformable objects [2]. 

In dynamic 4D time-space CT imaging, the object moves or deforms over time while X-ray 
projections are acquired from multiple angles, in contrast to most conventional CT setups 
where objects are static during imaging. Existing analytic (filtered back projection) and 
iterative methods produce poorly reconstructed images with severe artifacts and blurry 
edges, especially when the object changes considerably. The team on Kim’s recent LDRD 
effort (22-ERD-032) demonstrated a significant advance in the INR-based approach for 
addressing dynamic 4D CT reconstruction. The new approach utilizes distributed network 
training across several compute nodes and GPUs incorporating continuous forward CT 
models. Unlike existing INR methods, which involve forward and back propagation through 
dense voxel grids of the entire object time-space coordinates, their method uses a small 
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subset of object coordinates. This approach leads to significantly reduced memory and 
computing resource requirements, enabling high-fidelity 4D reconstruction of extremely 
large CT data sizes, as shown in Figure 1. 

 

 

Figure 1: Reconstructed 4D CT of real data using our INR method. We obtained CT data 
using the Deben stage to analyze the compression behavior of a 3D-printed lattice 
structure over time under the mechanical loads of the Deben stage. The volume dimension 
of each 3D data is 1024x1024x400 and the number of time steps is 722, which corresponds 
to the number of projections. 

 

With the data collection process established, a new challenge presented itself: How to 
efficiently visualize and analyze the data encoded by the INR representation? Producing 
snapshots like those shown in Figure 1 is a process of visual trial-and-error, typically done 
by adjusting parameters of the visualization and observing the response in real-time, using 
software such as ParaView or VisIt. Interactivity requires loading the full dataset into 
memory and calling well-honed algorithms for tasks like view adjustment, isosurface 
extraction, and setting opacity. However, when the data is on the order of gigabytes, 
running these algorithms is only feasible on GPU nodes, in parallel, or both, all of which are 
difficult. 

Fortunately, devising visualization methods for INR-based data is the focus of work by 
CASC researcher Andrew Gillette as part of a DOE ASCR award in the Data Visualization for 
Scientific Discovery, Decision-Making, and Communication portfolio. In conjunction with 
collaborators at Vanderbilt University, the University of Arizona, and a graduate student 
intern from Cornell University, Gillette is developing algorithms to query INR values in an 
adaptive fashion, based on the level of detail required in a specified region of inputs. For 
instance, in the image shown in Figure 2, the regions of space near the surface of the 
object (yellow) require a finer mesh resolution for visualization; initial experiments suggest 
these regions can be detected automatically, using an algorithm that acts directly on the 
weight matrices of the INR. 

While INRs have received an explosion of interest in recent years from the computer 
graphics community for rendering tasks, their use in the realm of scientific visualization is 
quite nascent. By dovetailing new data collection modalities with new data processing 
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algorithms, their aim is to demonstrate how state-of-the-art advances in ML can directly 
enable new methodologies for scientific experimentation. 

 

 

Figure 2: A down-sampled timeslice of the CT data, visualized in the commercial software 
ParaView, with a custom opacity function applied. Data-guided adaptive sampling for this 
type of data would complete the computational pipeline from data collection to interactive 
visualization for scientific analysis. 

 

[1] J. Liu, R. Anirudh, J. Thiagarajan, et al. “DOLCE: A Model-Based Probabilistic Diffusion 
Framework for Limited-Angle CT Reconstruction.” International Conference on Computer 
Vision (ICCV), 2023. 

[2] A. Reed, H. Kim, R. Anirudh, et al. “Dynamic CT Reconstruction from Limited Views with 
Implicit Neural Representations and Parametric Motion Fields.” International Conference 
on Computer Vision (ICCV), 2021. 
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Lab Impact | MuyGPs: A Scalable and Approximate 
Gaussian Process Framework 

Contact: Min Priest 

GPs are widely used statistical models that can learn nonlinear relationships between 
feature and response variables by treating them, in effect, as realizations from an infinite-
dimensional joint Gaussian distribution. GPs are especially useful in settings that require a 
precise understanding of prediction uncertainties, such as weather and climate modeling, 
multiscale physics simulations, and the emulation of computer experiments. However, the 
utility of conventional GPs is inversely proportional to data size. On one hand, GPs are 
notoriously sample-efficient compared to other conventional ML methods, meaning that 
they are very useful when observation data is very sparse, but on the other hand, training 
and predicting with a GP require inverting a matrix that is square in the number of training 
data, which has onerous quadratic memory and cubic time complexities. Former LLNL 
researcher Amanda Muyskens, along with CASC research Min Priest and team, introduced 
MuyGPs, a scalable, approximate GP framework suitable for the distributed memory 
environment on HPC platforms to address this shortcoming while maintaining the high-
quality UQ inherent to GPs [1]. 

The computational cost of conventional GPs comes from the assumption that predictions 
are conditioned on all the training data, while the central insight of MuyGPs is that, in 
practice, most of this covariance is limited to a few observations. Accordingly, MuyGPs 
sparsifies prediction computations by conditioning them only on a few training data points, 
such as their nearest neighbors. MuyGPs also avoids costly determinant evaluations by 
training model parameters using batched leave-one-out cross-validation as an objective 
function. This approach results in a training and prediction process that is linear in the size 
of data, an enormous improvement over conventional GPs. Moreover, MuyGPs also 
outperforms other approximate scalable GP methods in terms of both runtime and 
accuracy. 
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Figure 3: MuyGPs runtime versus root mean squared error performance on a benchmark 
climate problem with 100k training and 70k testing data points compared to other 
approximate scalable GP methods. While there is a tradeoff due to nearest neighbor size, 
MuyGPs is superlative along both axes. 

 

Furthermore, MuyGPs is designed to scale to distributed memory systems for accelerated 
training on enormous datasets. The overwhelming majority of necessary communication 
occurs in the construction of neighborhood sets for each batch or prediction point, while 
optimization iterations are fast and merely require an allreduce of the value of the 
objective function at each step. Additionally, the Python implementation of MuyGPyS is 
written with multiple backends from conventional NumPy to hardware accelerated 
computation using JAX, PyTorch, or MPI, allowing for >1000x speedups [2]. These 
backends are written using a shared API, so that simple codes written and tested on 
laptops can run on enormous problems on HPC systems with little or no change to the 
source code. Additionally, MuyGPyS empirically optimizes using much less time, energy, 
and specialized equipment than state-of-the-art neural architectures like LLMs, which 
have become increasingly burdensome to training. 

https://github.com/LLNL/MuyGPyS
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Figure 4: MuyGPyS runtime performance on a single node of the Pascal supercomputer 
using different backends. 

 

MuyGPs was developed to model weak gravitational lensing, which are small distortions of 
the shape of distant galaxies observed by astronomers and caused by intervening mass, 
e.g., black holes. While these distortions are generally so small as to be impossible to 
detect by analyzing a single galaxy point source, nearby sources are distorted in 
systematically aligned way, which allows for the statistical measurement of black holes in 
the universe. However, realizing such a statistical model using the depth of field available 
in next-generation telescope facilities requires evaluating a GP on billions of points—a 
clear impossibility without a technology like MuyGPs. 

The research team has also applied MuyGPs to many different use cases of interest to 
LLNL. Within computational astronomy, they used MuyGPs to discriminate between stars 
and galaxies [3], as well as to classify “blends” of both overlapping stars and overlapping 
galaxies, the populations of which are important parameters of models of the universe [4]. 
For space domain awareness, they used MuyGPs to detect closely spaced or overlapping 
space objects from telescope measurements [5]. More recently, they are working on 
methods to model patterns of life for orbiting space objects [6,7]. 
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Figure 5: MuyGPyS modeling UQ and identifying likely maneuvers of space objects. 

 

[1] A. Muyskens, B. Priest, I. Goumiri, and M. Schneider. “MuyGPs: Scalable Gaussian 
Process Hyperparameter Estimation Using Local Cross-Validation.” arXiv preprint 
arXiv:2104.14581, 2021. 

[2] B. Priest, A. Dunton, I. Goumiri, A. Andrews, and A. Muyskens. “MuyGPyS.” GitHub 
Repository, github.com/LLNL/MuyGPyS, 2024. 

[3] A. Muyskens, I. Goumiri, B. Priest, et al. “Star–Galaxy Image Separation with 
Computationally Efficient Gaussian Process Classification.” The Astronomical Journal 
163(4), 148, 2022. 

[4] J. Buchanan, M. Schneider, R. Armstrong, et al. “Gaussian Process Classification for 
Galaxy Blend Identification in LSST.” The Astrophysical Journal 924(2), 94, 2022. 

[5] K. Pruett, N. McNaughton, and M. Schneider. “Closely Spaced Object Classification 
Using MuyGPyS.” Proceedings of the Advanced Maui Optical and Space Surveillance 
(AMOS) Technologies Conference, 2023. 

[6] I. Goumiri, A. Dunton, A. Muyskens, et al. “Light Curve Completion and Forecasting 
Using Fast and Scalable Gaussian Processes (MuyGPs).” arXiv preprint arXiv:2208.14592, 
2022. 

[7] I. Goumiri, A. Muyskens, B. Priest, and R. Armstrong. “Light Curve Forecasting and 
Anomaly Detection Using Scalable, Anisotropic, and Heteroscedastic Gaussian Process 
Models.” Proceedings of the Advanced Maui Optical and Space Surveillance (AMOS) 
Technologies Conference, 2023. 

https://github.com/LLNL/MuyGPyS
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Advancing the Discipline | Safe and Trustworthy AI 

Contact: Bhavya Kailkhura 

Advancements in AI, particularly LLMs, offer significant potential for accelerating scientific 
research and bolstering national security. However, their blind adoption presents serious 
risks, especially in mission-critical areas such as CBRN (chemical, biological, radiological, 
nuclear), cyber security, and critical infrastructure. LLNL’s “AI Safety” team, led by CASC 
researcher Bhavya Kailkhura, is collaborating with Turing Award winner Prof. Yoshua 
Bengio and other experts on designing theoretical foundations and practical tools for 
ensuring advanced AI systems are safe and secure. 

They are adopting a holistic approach to safety and security by addressing the entire AI 
lifecycle—from data preparation (acquisition, curation, and processing) to model 
development (design, training, validation) to deployment (integration, monitoring, and 
maintenance). This comprehensive strategy ensures that safety and security are integral at 
every stage, mitigating potential risks and building trust throughout the AI lifecycle. To 
support this, they are making fundamental advancements in three key research areas: 

• Comprehensive Validation: This area focuses on developing rigorous 
methodologies to assess the correctness and vulnerabilities of AI models before 
their deployment. The goal is to create approaches for automated testing and 
analysis that can efficiently identify issues, ensuring that models are scrutinized 
under comprehensive conditions despite the computational challenges posed by 
their scale. Some of their early works have contributed to popular benchmarks 
(TrustLLM [1], MLCommons AI Safety [2], GTBench Reasoning [3]) and identified 
previously unknown vulnerabilities of LLMs. For example, they showed that model 
compression can create hidden security vulnerabilities [10]; popular finetuning 
methods like LoRA can amplify data biases [11]; and scaling up model sizes cannot 
solve robustness [12] and reasoning flaws [3] of existing AI models. 
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Figure 6: Schematic of safety benchmarks in TrustLLM [1]. 

• Provably Safe Design: This area aims to establish design principles that guarantee 
safety properties from the ground up. By leveraging formal methods, they seek to 
create AI architectures that are provably resistant to harmful behaviors, thus 
minimizing risks associated with unforeseen consequences during deployment. 
Furthermore, improving the reasoning ability of these models is also expected to 
improve the robustness to adversaries or unseen situations. Some of their 
contributions have significantly improved instruction-following [4], mathematical 
reasoning [5], planning [6], and adversarial robustness [7] abilities of models like 
LLMs and vision language models. Their past work on providing robustness 
guarantees [8] has won the International Verification of Neural Networks 
Competition (VNN-COMP) for three consecutive years and is currently being scaled 
to foundation models. 
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Figure 7: Subtle attacks on deep neural nets transfer to humans, showing 
brittleness in human visual perception [7]. Quiz: t.co/UuductMLWR 

• Robust Monitoring: This area emphasizes the creation of dynamic oversight 
mechanisms that continuously assess AI behavior in real-time. The challenge here 
is twofold: 1) implementing monitoring systems that can analyze vast amounts of 
data without introducing latency, and 2) detecting subtle anomalies in the behavior 
of sophisticated models. They are innovating ways to ensure prompt interventions 
and adaptations to maintain system integrity and alignment with safety goals, even 
as AI systems continue to learn and evolve. Their work on quantifying confidence in 
LLM generations [9] topped the LM-Polygraph UQ4LLM benchmark 
(github.com/IINemo/lm-polygraph). Calibrated confidence provided by their 
method helps in accurately detecting hallucinations (or fact checking). 

 

Figure 8: Calibrated confidence in LLM generation can help with mitigating hallucinations 
[9]. 

https://t.co/UuductMLWR
https://github.com/IINemo/lm-polygraph
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Currently, close collaboration is taking place with subject matter experts across different 
application domains to define and assess what constitutes risk and how to evaluate and 
mitigate it. This domain-informed approach addresses the unique challenges posed by 
various mission-critical applications. The techniques devised will be versatile and 
integrated into a range of ongoing LLNL efforts using LLMs in applications, such as 
bioassurance, materials discovery, and HPC code translation. Their efforts aim to lay the 
foundation for next-generation mission-critical AI systems that can provide provable 
assurances against vulnerabilities and risks, thus enhancing national security and 
fostering trust in AI across the DOE/NNSA application space. 

Validation and Benchmarking: 

[1] Y. Huang, L. Sun, H. Wang, et al. “Position: TrustLLM: Trustworthiness in Large 
Language Models.” In International Conference on Machine Learning, pp. 20166-20270. 
PMLR, 2024. 

[2] ML Commons AI Safety Team. “Introducing v0. 5 of the AI Safety Benchmark from 
MLCommons,” 2024. 

[3] J. Duan, R. Zhang, J. Diffenderfer, et al. “GTBench: Uncovering the Strategic Reasoning 
Limitations of LLMs via Game-Theoretic Evaluations.” arXiv preprint arXiv:2402.12348, 
2024. 

Improving AI Capabilities: 

[4] N. Jain, P.-Y. Chiang, Y. Wen, et al. “NEFTune: Noisy Embeddings Improve Instruction 
Finetuning.” In The Twelfth International Conference on Learning Representations, 2023. 

[5] S. McLeish, A. Bansal, A. Stein, et al. “Transformers Can Do Arithmetic with the Right 
Embeddings.” arXiv e-prints: arXiv-2405, 2024. 

[6] J. Duan, S. Wang, J. Diffenderfer, et al. “ReTA: Recursively Thinking Ahead to Improve 
the Strategic Reasoning of Large Language Models.” In Proceedings of the 2024 
Conference of the North American Chapter of the Association for Computational 
Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 2232-2246, 2024. 

[7] B. R. Bartoldson, J. Diffenderfer, K. Parasyris, and B. Kailkhura. “Adversarial Robustness 
Limits via Scaling-Law and Human-Alignment Studies.” In Forty-First International 
Conference on Machine Learning, 2024. 
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Monitoring and UQ: 

[8] K. Xu, Z. Shi, H. Zhang, et al. “Automatic Perturbation Analysis for Scalable Certified 
Robustness and Beyond.” Advances in Neural Information Processing Systems 33: 1129-
1141, 2020. 

[9] J. Duan, H. Cheng, S. Wang, et al. “Shifting Attention to Relevance: Towards the 
Predictive Uncertainty Quantification of Free-Form Large Language Models.” In 
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics 
(Volume 1: Long Papers), pp. 5050-5063, 2024. 

Cautionary Tales: 

[10] J. Hong, J. Duan, C. Zhang, et al. “Decoding Compressed Trust: Scrutinizing the 
Trustworthiness of Efficient LLMs Under Compression.” In Forty-First International 
Conference on Machine Learning, 2024. 

[11] S. Das, M. Romanelli, C. Tran, et al. “Low-Rank Finetuning for LLMs: A Fairness 
Perspective.” arXiv preprint arXiv:2405.18572, 2024. 

[12] E. Debenedetti, Z. Wan, M. Andriushchenko, et al. “Scaling compute is not all you 
need for adversarial robustness.” arXiv preprint arXiv:2312.13131, 2023. 

Machine Learning & Applications | Autonomous 
Multiscale Simulations – Embedded Machine Learning for 
Smart Simulations 

Contact: Jayram Thathachar 

The integration of AMS simulation systems represents a significant leap forward in 
computational science, blending deep learning with HPC to enhance simulation efficiency 
and accuracy. This innovative approach, developed by CASC researchers Timo Bremer and 
Jayram Thathachar and team, under an LDRD-SI project initiated in FY22, seeks to unify 
simulations across different scales and dimensions, leveraging advanced ML techniques 
to optimize and accelerate multiphysics simulations traditionally hindered by subscale 
computational models. 

At the core of many multiphysics simulations are subscale models that resolve complex 
phenomena such as equations of state and chemical kinetics. These models are 
computationally expensive and often become bottlenecks when integrated into larger 
systems, such as molecular dynamics codes. To address this, the AMS initiative utilizes 
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deep learning to create surrogate models, which are trained on commonly used physics 
packages to replicate and replace traditional computational models. This shift not only 
promises substantial improvements in simulation speed but also introduces challenges in 
ensuring the accuracy and reliability of these surrogate models, particularly in unforeseen 
scenarios. 

The novel aspect of the AMS 
framework lies in its autonomous 
operational mode, which 
continuously evaluates, corrects, 
and updates the surrogate models 
without human intervention. Through 
a newly developed UQ method for 
neural networks, the system 
assesses the accuracy of the models 
in real-time. If a model is deemed 
accurate, its output is used directly; 
if not, the system reverts to the 
conventional subscale model, 
gathering data to refine the surrogate 
model further. This loop of operation 
ensures that the surrogate models 
evolve and adapt continuously, 
enhancing their reliability and 
performance over time. In a nutshell, 
AMS replaces an embarrassingly 
parallel evaluation of some subscale 
package with a sophisticated facility-
wide workflow. 

The project is programmatically organized around three main thrusts: Applications, 
Machine Learning, and Workflow, which belies the interconnectivity required to provide an 
effective solution. The cross-thrust coordination includes incorporating the application 
requirements into the surrogate models as well as integrating UQ and continuous training 
in the HPC workflow. The solutions have been validated using two subscale codes with 
diverse characteristics: (1) CHEETAH, a thermochemical computer code designed to 
predict the properties of energetic materials, including their detonation velocities and 
energy release, and (2) CRETIN, a multidimensional non-local thermodynamic equilibrium 
simulation code used in plasma physics applications. The solutions involve newly 
developed techniques, including: 

Figure 9: A workflow example of the AMS 
framework for hydro-code simulations. 
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1. learnable Fourier basis to encode the geometry of the input and output feature 
space in CHEETAH, analogous to what is used in computer vision to accurately 
capture underlying “high frequency” information between the input coordinates and 
the output pixels; 

2. a UQ method called Delta-UQ to accurately flag data and model inconsistencies, 
and failure detectors to categorize the data regimes into different risk levels; 

3. a transformer-based encoder-decoder architecture to map CRETIN features into a 
space in which the correlation between the features is effectively captured using 
attention mechanisms; 

4. physics-informed transformations on coupled emissivity and absorption features to 
improve the fidelity of energy calculations concerning radiation, and incorporating 
the mean-free path of photons to target regions of the plasma physics that are more 
meaningful for the physics. These techniques result in demonstrably more effective 
loss functions for training that go beyond the simple feature error metrics; and 

5. a novel and scalable workflow architecture that manages the complex data flows 
and computational tasks required by the AMS system. 

The AMS project not only promises to revolutionize how simulations are conducted in 
terms of speed and efficiency but also highlights the potential of deep learning in scientific 
computing. By automating the training and refinement of models, AMS allows for more 
dynamic and responsive simulation environments. This capability could lead to broader 
implications for predictive modeling in various scientific domains, potentially changing 
how researchers approach complex simulations, and likely set a new standard for the 
integration of ML and HPC in scientific research. 

[1] J. Thiagarajan, R. Anirudh, V. Narayanaswamy, and P.-T. Bremer. “Single Model 
Uncertainty Estimation via Stochastic Data Centering.” Advances in Neural Information 
Processing Systems, 35, pp. 8662-8674, 2022. 

[2] J. Thiagarajan, V. Narayanaswamy, P. Trivedi, and R. Anirudh. “PAGER: A Framework for 
Failure Analysis of Deep Regression Models.” arXiv preprint arXiv:2309.10977, 2023. To 
appear in ICML 2025. 
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Was this newsletter link passed along to you? Or did you happen to find it on social media? 
Sign up to be notified of future newsletters. 

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National 
Laboratory under Contract DE-AC52-07NA27344. LLNL-MI-872687. Edited by Ming Jiang. 

https://computing.llnl.gov/casc/newsletter
mailto:jiang4@llnl.gov

	In This Issue:
	From the Director
	Collaborations | Machine Learning Under the Hood of Dynamic Computed Tomography
	Lab Impact | MuyGPs: A Scalable and Approximate Gaussian Process Framework
	Advancing the Discipline | Safe and Trustworthy AI
	Machine Learning & Applications | Autonomous Multiscale Simulations – Embedded Machine Learning for Smart Simulations
	CASC Newsletter Sign-Up


